existential quantifier - définition. Qu'est-ce que existential quantifier
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est existential quantifier - définition

LOGICAL QUANTIFICATION STATING THAT A STATEMENT HOLDS FOR AT LEAST ONE OBJECT
There exists; There exist; Existential quantifier; For some; Existential proposition; There is a unique; ∃; Mathematical existence; There Exists; Something (logic); Existential operator; Existentially quantified; ∃I; ∃E; ∄; Exist (logic)

existential quantifier         
Existential quantification         
In predicate logic, an existential quantification is a type of quantifier, a logical constant which is interpreted as "there exists", "there is at least one", or "for some". It is usually denoted by the logical operator symbol ∃, which, when used together with a predicate variable, is called an existential quantifier ("" or "").
Quantifier (logic)         
  • [[Augustus De Morgan]] (1806-1871) was the first to use "quantifier" in the modern sense.
  • url=https://www.researchgate.net/publication/366867569}}
</ref>
  • Syntax tree of the formula <math> \forall x (\exists y  B(x,y)) \vee C(y,x) </math>, illustrating scope and variable capture. Bound and free variable occurrences are colored in red and green, respectively.
LOGICAL OPERATOR SPECIFYING HOW MANY ENTITIES IN THE DOMAIN OF DISCOURSE THAT SATISFY AN OPEN FORMULA
Logical quantifier; Quantificational fallacy; Solution quantifier; Quantification (logic); Quantifiers (logic); Set quantifier; Range of quantification
In logic, a quantifier is an operator that specifies how many individuals in the domain of discourse satisfy an open formula. For instance, the universal quantifier \forall in the first order formula \forall x P(x) expresses that everything in the domain satisfies the property denoted by P.

Wikipédia

Existential quantification

In predicate logic, an existential quantification is a type of quantifier, a logical constant which is interpreted as "there exists", "there is at least one", or "for some". It is usually denoted by the logical operator symbol ∃, which, when used together with a predicate variable, is called an existential quantifier ("x" or "∃(x)" or "(∃x)"). Existential quantification is distinct from universal quantification ("for all"), which asserts that the property or relation holds for all members of the domain. Some sources use the term existentialization to refer to existential quantification.